Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The presence of pharmaceuticals as microcontaminants in the environment has become a particular concern given the growing increase in water reuse and recycling to promote global sustainability of this resource. Pharmaceuticals can often undergo reversible interactions with soluble dissolved organic material such as humic acid, which may be an important factor in determining the bioavailability and effects of these compounds in the environment. In this study, high-performance affinity microcolumns containing non-covalently entrapped and immobilized humic acid are used to examine the binding strength and interactions of this agent for tetracycline, carbamazepine, ciprofloxacin, and norfloxacin, all common pharmaceutical microcontaminants known to bind humic acid. The binding constants, as measured with Aldrich humic acid, have good agreement with values reported in the literature. In addition, the effects of temperature, ionic strength, and pH on these interactions are examined with the humic acid microcolumns. This technique made it possible to determine the relative importance of electrostatic interactions vs non-polar interactions or hydrogen bonding on these binding processes. This study illustrates how affinity microcolumns can be used to screen and uniformly quantify binding by pharmaceuticals with humic acid, as well as to study the mechanisms of these interactions, with this information often being acquired in minutes and with small amounts of binding agent (~0.3 mg per microcolumn, which could be used over 200-300 experiments). Use of entrapment and affinity microcolumns can support similar research for a wide range of other microcontaminants with humic acid or alternative binding agents found in water and the environment.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Ultrafast affinity extraction (UAE) is a form of microscale affinity HPLC that can be employed to quickly measure equilibrium constants for solute-binding agent interactions in solution. This study used chromatographic and equilibrium theory with universal plots to examine the general conditions that are needed in UAE to obtain accurate, precise, and robust measurements of equilibrium constants for such interactions. The predicted results were compared to those obtained by UAE in studies that examined the binding of various drugs with two transport proteins: human serum albumin and α1-acid glycoprotein. The most precise and robust conditions for these binding studies occurred for systems with intermediate values for their equilibrium free fraction for the solute (F0 ≈ 0.20-0.80). These trends showed good agreement with those seen in prior studies using UAE. It was further determined how the apparent free fraction of a solute was related to the dissociation rate of this solute, the time allowed for solute dissociation during UAE, and the equilibrium free fraction for the solute. These results also agreed with experimental results, as obtained for the binding of warfarin and gliclazide with human serum albumin. The final section examined how a change in the apparent free fraction, as caused by solute dissociation, affected the accuracy of an equilibrium constant that was measured by UAE. In addition, theoretical plots were generated to allow the selection of conditions for UAE that provided a given level of accuracy during the measurement of an equilibrium constant. The equations created and trends identified for UAE were general ones that can be extended in future work to other solutes and binding agents.more » « less
An official website of the United States government
